《时间简史》第2/16页


在它只是假设的意义上来讲,任何物理理论总是临时性的:你永远不可能将它证明。不管多少回实验的结果和某一理论相一致,你永远不可能断定下一次结果不会和它矛盾。另一方面,哪怕你只要找到一个和理论预言不一致的观测事实,即可证伪之。正如科学哲学家卡尔・波普所强调的,一个好的理论的特征是,它能给出许多原则上可以被观测所否定或证伪的预言。每回观察到与这预言相符的新的实验,则这理论就幸存,并且增加了我们对它的可信度;然而若有一个新的观测与之不符,则我们只得抛弃或修正这理论。至少被认为这迟早总会发生的,问题在于人们有无才干去实现这样的观测。

实际上经常发生的是,所设计的新理论确实是原先理论的推广。例如,对水星的非常精确的观测揭露了它的运动和牛顿理论预言之间的很小差异。爱因斯坦的广义相对论所预言的运动和牛顿理论略有不同。爱因斯坦的预言和观测相符,而牛顿的预言与观测不相符,这一事实是这个新理论的一个关键证据。然而我们在大部分实际情况下仍用牛顿理论,因为在我们通常处理的情形下,两者差别非常小。(牛顿理论的另一个巨大的优点在于,它比爱因斯坦理论容易处理得多!)

科学的终极目的在于提供一个简单的理论去描述整个宇宙。然而,大部分科学家遵循的方法是将这问题分成两部分。首先,是一些告诉我们宇宙如何随时间变化的定律;(如果我们知道在任一时刻宇宙是什么样子的,则这些定律即能告诉我们以后的任一时刻宇宙是什么样子的。)第二,关于宇宙初始状态的问题。有些人认为科学只应过问第一部分,他们认为初始状态的问题应是形而上学或宗教的范畴。他们会说,全能的上帝可以随心所欲地启动这个宇宙。也许是这样。但是,倘若那样,他也可以使宇宙以完全任意的方式演化。可是,看起来他选择宇宙以一种非常规则的、按照一定规律的方式演化。所以,看来可以同样合理地假定,也存在着制约初始状态的定律。 毕全功于一役地设计一种能描述整个宇宙的理论,看来是非常困难的。反之,我们是将这问题分成许多小块,并发明许多部分理论。每一部分理论描述和预言一定有限范围的观测,同时忽略其他量的效应或用简单的一组数来代表之。可能这方法是全错的。如果宇宙中的每一件东西都以非常基本的方式依赖于其他的任何一件东西,很可能不能用隔离法研究问题的部分去逼近其完备的答案。尽管如此,这肯定是我们在过去取得进展所用的方法。牛顿引力理论又是一个经典的例子,它告诉我们两个物体之间的引力只决定于与每个物体相关的一个数――它的质量;而与物体由何物组成无关。这样,人们不需要太阳和行星结构和成份的理论就可以计算它们的轨道。

今天科学家按照两个基本的部分理论――广义相对论和量子力学来描述宇宙。它们是本世纪上半叶的伟大的智慧成就。广义相对论是描述引力和宇宙的大尺度结构,也就是从只有几英哩直到大至1亿亿亿(1后面跟24个0)英里,即可观测到的宇宙范围的尺度的结构。另一方面,量子力学处理极小尺度的现象,例如万亿分之一英寸(1英寸=2.54厘米)。然而,可惜的是,这两个理论不是互相协调的――它们不可能都对。当代物理学的一个主要的努力,以及这本书的主题,即是寻求一个能将其合并在一起的理论――量子引力论。我们还没有这样的理论,要获得这个理论,我们可能还有相当长的路要走,然而我们已经知道了这个理论所应具备的许多性质。在以下几章,人们将会看到,我们已经知道了相当多的量子引力论所应有的预言。

现在,如果你相信宇宙不是任意的,而是由确定的定律所制约的,你最终必须将这些部分理论合并成一套能描述宇宙中任何东西的完整统一理论。然而,在寻求这样的完整统一理论中有一个基本的自相矛盾。在前面概括的关于科学理论的思想中,假定我们是有理性的生物,既可以随意自由地观测宇宙,又可以从观察中得出逻辑推论。在这样的方案里可以合理地假设,我们可以越来越接近找到制约我们宇宙的定律。然而,如果真有一套完整的统一理论,则它也将决定我们的行动。这样,理论本身将决定了我们对之探索的结果!那么为什么它必须确定我们从证据得到正确的结论?它不也同样可以确定我们引出错误的结论吗?或者根本没有结论?

对于这个问题,我所能给出的回答是基于达尔文的自然选择原理。这思想是说,在任何自繁殖的群体中,存在有不同个体在遗传物质和发育上的变异。这些差异表明,某些个体比其他个体对周围的世界更能引出正确的结论,并去适应它。这些个体更可能存活、繁殖,因此它们的行为和思维的模式将越来越起主导作用。这一点在过去肯定是真的,即我们称之为智慧和科学发现的东西给我们带来了存活的好处。这种情况是否仍会如此不是很清楚:我们的科学发现也可以将我们的一切都毁灭。即使不是这样,一个完整的统一理论对于我们存活的机会不会有很大影响。然而,假定宇宙已经以规则的方式演化至今,我们可以预期,自然选择赋予我们的推理能力在探索完整统一理论时仍然有效,并因此不会导致我们得到错误的结论。

因为除了最极端的情况外,我们已有了对所有一切都足够给出精确的预言的部分理论,看来很难以现实的理由为探索宇宙的终极理论辩护。(值得指出,虽然可用类似的论点来攻击相对论和量子力学,但这些理论已给我们带来了核能和微电子学的革命!)所以,一套完整的统一理论的发现可能对我们种族的存活无助,甚至也不会影响我们的生活方式。然而自从文明开始,人们即不甘心于将事件看作互不相关而不可理解的。他们渴求理解世界的根本秩序。今天我们仍然渴望知道,我们为何在此?我们从何而来?人类求知的最深切的意愿足以为我们所从事的不断的探索提供正当的理由。而我们的目标恰恰正是对于我们生存其中的宇宙作完整的描述。

第二章 空间和时间

我们现在关于物体运动的观念来自于伽利略和牛顿。在他们之前,人们相信亚里士多德,他说物体的自然状态是静止的,并且只在受到力或冲击作用时才运动。这样,重的物体比轻的物体下落得更快,因为它受到更大的力将其拉向地球。

亚里士多德的传统观点还以为,人们用纯粹思维可以找出制约宇宙的定律:不必要用观测去检验它。所以,伽利略是第一个想看看不同重量的物体是否确实以不同速度下落的人。据说,伽利略从比萨斜塔上将重物落下,从而证明了亚里士多德的信念是错的。这故事几乎不可能是真的,但是伽利略的确做了一些等同的事――将不同重量的球从光滑的斜面上滚下。这情况类似于重物的垂直下落,只是因为速度小而更容易观察而已。伽利略的测量指出,不管物体的重量是多少,其速度增加的速率是一样的。例如,在一个沿水平方向每走10米即下降1米的斜面上,你释放一个球,则1秒钟后球的速度为每秒1米,2秒钟后为每秒2米等等,而不管这个球有多重。当然,一个铅锤比一片羽毛下落得更快,那是因为空气对羽毛的阻力引起的。如果一个人释放两个不遭受任何空气阻力的物体,例如两个不同的铅锤,它们则以同样速度下降。航天员大卫・斯各特在月亮上进行了羽毛和铅锤实验。因为没有空气阻碍东西下落。

伽利略的测量被牛顿用来作为他的运动定律的基础。在伽利略的实验中,当物体从斜坡上滚下时,它一直受到不变的外力(它的重量),其效应是它被恒定地加速。这表明,力的真正效应总是改变物体的速度,而不是像原先想像的那样,仅仅使之运动。同时,它还意味着,只要一个物体没有受到外力,它就会以同样的速度保持直线运动。这个思想是第一次被牛顿在1687年出版的《数学原理》一书中明白地叙述出来,并被称为牛顿第一定律。物体受力时发生的现象则由牛顿第二定律所给出:物体被加速或改变其速度,其改变率与所受外力成比例。(例如,如果力加倍,则加速度也将加倍。)物体的质量(或物质的量)越大,则加速度越小,(以同样的力作用于具有两倍质量的物体则只产生一半的加速度。)小汽车可提供一个熟知的例子,发动机的功率越大,则加速度越大,但是小汽车越重,则对同样的发动机加速度越小。

除了他的运动定律,牛顿还发现了描述引力的定律:任何两个物体都相互吸引,其引力大小与每个物体的质量成正比。这样,如果其中一个物体(例如A)的质量加倍,则两个物体之间的引力加倍。这是你能预料得到的,因为新的物体A可看成两个具有原先质量的物体,每一个用原先的力来吸引物体B,所以A和B之间的总力加倍。其中一个物体质量大到原先的2倍,另一物体大到3倍,则引力就大到6倍。现在人们可以看到,何以落体总以同样的速率下降:具有2倍重量的物体受到将其拉下的2倍的引力,但它的质量也大到两倍。按照牛顿第二定律,这两个效应刚好互相抵消,所以在所有情形下加速度是同样的。

牛顿引力定律还告诉我们,物体之间的距离越远,则引力越小。牛顿引力定律讲,一个恒星的引力只是一个类似恒星在距离小一半时的引力的1/4。这个定律极其精确地预言了地球、月亮和其他行星的轨道。如果这定律变为恒星的万有引力随距离减小得比这还快,则行星轨道不再是椭圆的,它们就会以螺旋线的形状盘旋到太阳上去。如果引力减小得更慢,则远处恒星的引力将会超过地球的引力。

亚里士多德和伽利略――牛顿观念的巨大差别在于,亚里士多德相信存在一个优越的静止状态,任何没有受到外力和冲击的物体都采取这种状态。特别是他以为地球是静止的。但是从牛顿定律引出,并不存在一个静止的唯一标准。人们可以讲,物体A静止而物体B以不变的速度相对于物体A运动,或物体B静止而物体A运动,这两种讲法是等价的。 例如,我们暂时将地球的自转和它绕太阳的公转置之一旁,则可以讲地球是静止的,一列火车以每小时90英里(1英里=1.609公里)的速度向北前进,或火车是静止的,而地球以每小时90英里(1英里=1.609公里)的速度向南运动。如果一个人在火车上以运动的物体做实验,所有牛顿定律都成立。例如,在火车上打乓乒球,将会发现,正如在铁轨边上一张台桌上一样,乓乒球服从牛顿定律,所以无法得知是火车还是地球在运动。

缺乏静止的绝对的标准表明,人们不能决定在不同时间发生的两个事件是否发生在空间的同一位置。例如,假定在火车上我们的乓乒球直上直下地弹跳,在一秒钟前后两次撞到桌面上的同一处。在铁轨上的人来看,这两次弹跳发生在大约相距100米的不同的位置,因为在这两回弹跳的间隔时间里,火车已在铁轨上走了这么远。这样,绝对静止的不存在意味着,不能像亚里士多德相信的那样,给事件指定一个绝对的空间的位置。事件的位置以及它们之间的距离对于在火车上和铁轨上的人来讲是不同的,所以没有理由以为一个人的处境比他人更优越。

牛顿对绝对位置或被称为绝对空间的不存在感到非常忧虑,因为这和他的绝对上帝的观念不一致。事实上,即使绝对空间的不存在被隐含在他的定律中,他也拒绝接受。因为这个非理性的信仰,他受到许多人的严厉批评,最有名的是贝克莱主教,他是一个相信所有的物质实体、空间和时间都是虚妄的哲学家。当人们将贝克莱的见解告诉著名的约翰逊博士时,他用脚尖踢到一块大石头上,并大声地说:“我要这样驳斥它!”

亚里士多德和牛顿都相信绝对时间。也就是说,他们相信人们可以毫不含糊地测量两个事件之间的时间间隔,只要用好的钟,不管谁去测量,这个时间都是一样的。时间相对于空间是完全分开并独立的。这就是大部份人当作常识的观点。然而,我们必须改变这种关于空间和时间的观念。虽然这种显而易见的常识可以很好地对付运动甚慢的诸如苹果、行星的问题,但在处理以光速或接近光速运动的物体时却根本无效。

光以有限但非常高的速度传播的这一事实,由丹麦的天文学家欧尔・克里斯琴森・罗麦于1676年第一次发现。他观察到,木星的月亮不是以等时间间隔从木星背后出来。不像如果月亮以不变速度绕木星运动时人们所预料的那样。当地球和木星都绕着太阳公转时,它们之间的距离在变化着。罗麦注意到我们离木星越远则木星的月食出现得越晚。他的论点是,因为当我们离开更远时,光从木星月亮那儿要花更长的时间才能达到我们这儿。然而,他测量到的木星到地球的距离变化不是非常准确,所以他的光速的数值为每秒140000英里(1英里=1.609公里),而现在的值为每秒186000英里(1英里=1.609公里)。尽管如此,罗麦不仅证明了光以有限速度运动,并且测量了光速,他的成就是卓越的――要知道,这一切都是在牛顿发表《数学原理》之前11年进行的。

直到1865年,当英国的物理学家詹姆士・麦克斯韦成功地将当时用以描述电力和磁力的部分理论统一起来以后,才有了光传播的真正的理论。麦克斯韦方程预言,在合并的电磁场中可以存在波动的微扰,它们以固定的速度,正如池塘水面上的涟漪那样运动。如果这些波的波长(两个波峰之间的距离)为1米或更长一些,这就是我们所谓的无线电波。更短波长的波被称做微波(几个厘米)或红外线(长于万分之1厘米)。可见光的波长在100万分之40到100万分之80厘米之间。更短的波长被称为紫外线、X射线和伽玛射线。

麦克斯韦理论预言,无线电波或光波应以某一固定的速度运动。但是牛顿理论已经摆脱了绝对静止的观念,所以如果假定光是以固定的速度传播,人们必须说清这固定的速度是相对于何物来测量的。这样人们提出,甚至在“真空”中也存在着一种无所不在的称为“以太”的物体。正如声波在空气中一样,光波应该通过这以太传播,所以光速应是相对于以太而言。相对于以太运动的不同观察者,应看到光以不同的速度冲他们而来,但是光对以太的速度是不变的。特别是当地球穿过以太绕太阳公转时,在地球通过以太运动的方向测量的光速(当我们对光源运动时)应该大于在与运动垂直方向测量的光速(当我们不对光源运动时)。1887年,阿尔贝特・麦克尔逊(后来成为美国第一个物理诺贝尔奖获得者)和爱德华・莫雷在克里夫兰的卡思应用科学学校进行了非常仔细的实验。他们将在地球运动方向以及垂直于此方向的光速进行比较,使他们大为惊奇的是,他们发现这两个光速完全一样!

在1887年到1905年之间,人们曾经好几次企图去解释麦克尔逊――莫雷实验。最著名者为荷兰物理学家亨得利克・罗洛兹,他是依据相对于以太运动的物体的收缩和钟变慢的机制。然而,一位迄至当时还不知名的瑞士专利局的职员阿尔贝特・爱因斯坦,在1905年的一篇著名的论文中指出,只要人们愿意抛弃绝对时间的观念的话,整个以太的观念则是多余的。几个星期之后,一位法国最重要的数学家亨利・彭加勒也提出类似的观点。爱因斯坦的论证比彭加勒的论证更接近物理,因为后者将此考虑为数学问题。通常这个新理论是归功于爱因斯坦,但彭加勒的名字在其中起了重要的作用。

这个被称之为相对论的基本假设是,不管观察者以任何速度作自由运动,相对于他们而言,科学定律都应该是一样的。这对牛顿的运动定律当然是对的,但是现在这个观念被扩展到包括马克斯韦理论和光速:不管观察者运动多快,他们应测量到一样的光速。这简单的观念有一些非凡的结论。可能最著名者莫过于质量和能量的等价,这可用爱因斯坦著名的方程E=mc2来表达(这儿E是能量,m是质量,c是光速),以及没有任何东西能运动得比光还快的定律。由于能量和质量的等价,物体由于它的运动所具的能量应该加到它的质量上面去。换言之,要加速它将变得更为困难。这个效应只有当物体以接近于光速的速度运动时才有实际的意义。例如,以10%光速运动的物体的质量只比原先增加了0.5%,而以90%光速运动的物体,其质量变得比正常质量的两倍还多。当一个物体接近光速时,它的质量上升得越来越快,它需要越来越多的能量才能进一步加速上去。实际上它永远不可能达到光速,因为那时质量会变成无限大,而由质量能量等价原理,这就需要无限大的能量才能做到。由于这个原因,相对论限制任何正常的物体永远以低于光速的速度运动。只有光或其他没有内禀质量的波才能以光速运动。

相对论的一个同等卓越的成果是,它变革了我们对空间和时间的观念。在牛顿理论中,如果有一光脉冲从一处发到另一处,(由于时间是绝对的)不同的观测者对这个过程所花的时间不会有异议,但是他们不会在光走过的距离这一点上取得一致的意见(因为空间不是绝对的)。由于光速等于这距离除以所花的时间,不同的观察者就测量到不同的光速。另一方面,在相对论中,所有的观察者必须在光是以多快的速度运动上取得一致意见。然而,他们在光走过多远的距离上不能取得一致意见。所以现在他们对光要花多少时间上也不会取得一致意见。(无论如何,光所花的时间正是用光速――这一点所有的观察者都是一致的――去除光所走的距离――这一点对他们来说是不一致的。)总之,相对论终结了绝对时间的观念!这样,每个观察者都有以自己所携带的钟测量的时间,而不同观察者携带的同样的钟的读数不必要一致。

图2.1 时间用垂直坐标测量,离开观察者的距离用水平坐标测量。观察者在空间和时间里的途径用左边的垂线表示。到事件去和从事件来的光线的途径用对角线表示。

每个观察者都可以用雷达去发出光脉冲或无线电波来测定一个事件在何处何时发生。脉冲的一部分由事件反射回来后,观察者可在他接收到回波时测量时间。事件的时间可认为是发出脉冲和脉冲反射回来被接收的两个时刻的中点;而事件的距离可取这来回过程时间的一半乘以光速。(在这意义上,一个事件是发生在指定空间的一点以及指定时间的一点的某件事。)这个意思已显示在图2.1上。这是时空图的一个例子。利用这个步骤,作相互运动的观察者对同一事件可赋予不同的时间和位置。没有一个特别的观察者的测量比任何其他人更正确,但所有这些测量都是相关的。只要一个观察者知道其他人的相对速度,他就能准确算出其他人该赋予同一事件的时间和位置。

现在我们正是用这种方法来准确地测量距离,因为我们可以比测量长度更为准确地测量时间。实际上,米是被定义为光在以铂原子钟测量的0.000000003335640952秒内走过的距离(取这个特别的数字的原因是,因为它对应于历史上的米的定义――按照保存在巴黎的特定铂棒上的两个刻度之间的距离)。同样,我们可以用叫做光秒的更方便更新的长度单位,这就是简单地定义为光在一秒走过的距离。现在,我们在相对论中按照时间和光速来定义距离,这样每个观察者都自动地测量出同样的光速(按照定义为每0. 000000003335640952秒之1米)。没有必要引入以太的观念,正如麦克尔逊――莫雷实验显示的那样,以太的存在是无论如何检测不到的。然而,相对论迫使我们从根本上改变了对时间和空间的观念。我们必须接受的观念是:时间不能完全脱离和独立于空间,而必须和空间结合在一起形成所谓的时空的客体。

我们通常的经验是可以用三个数或座标去描述空间中的一点的位置。譬如,人们可以说屋子里的一点是离开一堵墙7英尺(1英尺=0.3048米),离开另一堵墙3英尺(1英尺=0.3048米),并且比地面高5英尺(1英尺=0.3048米)。人们也可以用一定的纬度、经度和海拔来指定该点。人们可以自由地选用任何三个合适的坐标,虽然它们只在有限的范围内有效。人们不是按照在伦敦皮卡迪里圆环以北和以西多少英里(1英里=1.609公里)以及高于海平面多少英尺(1英尺=0.3048米)来指明月亮的位置,而是用离开太阳、离开行星轨道面的距离以及月亮与太阳的连线和太阳与临近的一个恒星――例如α-半人马座――连线之夹角来描述之。甚至这些座标对于描写太阳在我们星系中的位置,或我们星系在局部星系群中的位置也没有太多用处。事实上,人们可以用一族互相交迭的坐标碎片来描写整个宇宙。在每一碎片中,人们可用不同的三个座标的集合来指明点的位置。

图2.2 离开太阳的距离(以1012英里,1英里=1.609公里,为单位)

一个事件是发生于特定时刻和空间中特定的一点的某种东西。这样,人们可以用四个数或座标来确定它,并且座标系的选择是任意的;人们可以用任何定义好的空间座标和一个任意的时间测量。在相对论中,时间和空间座标没有真正的差别,犹如任何两个空间座标没有真正的差别一样。譬如可以选择一族新的座标,使得第一个空间座标是旧的第一和第二空间座标的组合。例如,测量地球上一点位置不用在伦敦皮卡迪里圆环以北和以西的里数,而是用在它的东北和西北的里数(1英里=1.609公里)。类似地,人们在相对论中可以用新的时间座标,它是旧的时间(以秒作单位)加上往北离开皮卡迪里的距离(以光秒为单位)。

图2.3

将一个事件的四座标作为在所谓的时空的四维空间中指定其位置的手段经常是有助的。对我来说,摹想三维空间已经足够困难!然而很容易画出二维空间图,例如地球的表面。(地球的表面是两维的,因为它上面的点的位置可以用两个座标,例如纬度和经度来确定。)通常我将使用二维图,向上增加的方向是时间,水平方向是其中的一个空间座标。不管另外两个空间座标,或者有时用透视法将其中一个表示出来。(这些被称为时空图,如图2.1所示。)例如,在图2.2中时间是向上的,并以年作单位,而沿着从太阳到α-半人马座连线的距离在水平方向上以英哩来测量。太阳和α-半人马座通过时空的途径是由图中的左边和右边的垂直线来表示。从太阳发出的光线沿着对角线走,并且要花4年的时间才能从太阳走到α-半人马座。

正如我们已经看到的,麦克斯韦方程预言,不管光源的速度如何,光速应该是一样的,这已被精密的测量所证实。这样,如果有一个光脉冲从一特定的空间的点在一特定的时刻发出,在时间的进程中,它就会以光球面的形式发散开来,而光球面的形状和大小与源的速度无关。在100万分之1秒后,光就散开成一个半径为300米的球面;100万分之2秒后,半径变成600米;等等。这正如同将一块石头扔到池塘里,水表面的涟漪向四周散开一样,涟漪以圆周的形式散开并越变越大。如果将三维模型设想为包括二维的池塘水面和一维时间,这些扩大的水波的圆圈就画出一个圆锥,其顶点即为石头击到水面的地方和时间(图2.3)。类似地,从一个事件散开的光在四维的时空里形成了一个三维的圆锥,这个圆锥称为事件的未来光锥。以同样的方法可以画出另一个称之为过去光锥的圆锥,它表示所有可以用一光脉冲传播到该事件的事件的集合(图2.4)。

图2.4

对于给定的事件P,人们可以将宇宙中的其他事件分成三类。从事件P出发由一个粒子或者波以等于或小于光速的速度运动能到达的那些事件称为属于P的未来。它们处于从事件P发射的膨胀的光球面之内或之上。这样,在时空图中它们处于P的未来光锥的里面或上面。因为没有任何东西比光走得更快,所以在P所发生的东西只能影响P的未来的事件。

类似地,P的过去可被定义为下述的所有事件的集合,从这些事件可以等于或小于光速的速度运动到达事件P。这样,它就是能影响发生在P的东西的所有事件的集合。不处于P的未来或过去的事件被称之为处于P的他处(图2.5)。在这种事件处所发生的东西既不能影响发生在P的东西,也不受发生在P的东西的影响。例如,假定太阳就在此刻停止发光,它不会对此刻的地球发生影响,因为地球的此刻是在太阳熄灭这一事件的光锥之外(图2.6)。我们只能在8分钟之后才知道这一事件,这是光从太阳到达我们所花的时间。只有到那时候,地球上的事件才在太阳熄灭这一事件的将来光锥之内。同理,我们也不知道这一时刻发生在宇宙中更远地方的事:我们看到的从很远星系来的光是在几百万年之前发出的,在我们看到最远物体的情况下,光是在80亿年前发出的。这样当我们看宇宙时,我们是在看它的过去。

当前:第2/16页

提示: 双击屏幕进入下一页